	PROGRAMME "Thermodynamique"	1 ^{ère} ANNEE SOCLE COMMUN
DOMAINE SCIENCE ET TECHNOLOGIE	Volume horaire semestriel 67h30 min	
TECHNOLOGIE	Volume horaire hebdomadaire 4h30 min	Coef : 03
	(3H00 min cours et 1h30 min TD)	Crédits : 06
	Semestre 1 -15 semaines-	

Programme	Nombre de semaines
CHAPITRE I : Généralités sur la thermodynamique	02
	02
Introduction	
I/Propriétés fondamentales des fonctions d'état	
 Rappel de définitions mathématiques Différentielle d'une fonction d'état (1^{ère} dérivée et 2^{ème} dérivée croisée) 	
3) Condition mathématique d'une fonction d'état (D.T.E) II/ Définitions des systèmes thermodynamiques et le milieu extérieur	
 Les constituants ou la composition d'un système Les différents types de systèmes (ouvert, fermé, isolé) III/ Description d'un système thermodynamique 	
 Etat d'un système thermodynamique Variables (paramètres ou grandeurs) d'état Fonctions d'état Grandeurs extensives et intensives Équation d'état des gaz parfaits Équation d'état des gaz réels (Van der Waals, Berthelot,) IV/Evolution et états d'équilibre thermodynamique d'un système 	
 Etat d'équilibre mécanique Etat d'équilibre thermique Etat d'équilibre chimique V/ Transferts possibles entre le système est le milieu extérieur Transferts ou échanges d'énergie (travail, chaleur) 	
2) Transferts ou échanges de matière	

VI/ Transformations de l'état d'un système (opération, évolution) VI-I/ Transformations d'un gaz parfait 1) Transformation isochore d'un gaz parfait 2) Transformation isobare d'un gaz parfait 3) Transformation isotherme d'un gaz parfait 4) Transformations adiabatiques d'un gaz parfait 5) Transformations (ouvertes, fermées ou cycliques) 6) Transformations monothermes 7) Transformations infinitésimales 8) Transformations quasistatiques 9) Les transformations réversibles et irréversibles VI-II/ Transformations physiques ou Transformations de changement d'état physique(Fusion, vaporisation, sublimation, condensation,...) VI- III/ Transformations chimiques ou réactions chimiques (Combustion, estérification, explosion, corrosion, décoloration,...) VI–IV/ Représentation graphique des Transformations des gaz parfaits a) Diagramme de Clapeyron : p=f(V) dans le plan (p,V) b) Diagramme d'Amagat : pV=f(p) dans le plan (pV,p) VII/ Rappel des lois des gaz parfaits 1) Loi de Boyle-Mariotte :pV=cste à T cste 2) loi de Gay-Lussac :V/T=cste à p=cste 3) loi de Charles : P/T =cste à V =cst 4) loi de Dalton; les pressions partielles : $p_i = x_i . P_T$ **CHAPITRE II (02 semaines et demi)** I/ Notion de température 02.5 1) La thermométrie 2) Le principe zéro de la thermodynamique 3) Echelles de température : centésimales, absolues et Fahrenheit 4) Conception d'un thermomètre à mercure 5) Les différents types de Thermomètres II/ Notion de chaleur ou de quantité de chaleur Q 1) Expression générale de la quantité de chaleur Q 2) Différentes expressions de la chaleur pour les systèmes f(P,V,T)=0 3) La capacité calorifique thermique C (j/K ou cal/K) 4) Les différents types de capacité calorifique thermique

i) capacité calorifique thermique massique (j/Kg.K) ii) capacité calorifique thermique molaire (j/mol.K) iii) capacité calorifique thermique molaire ou massique isobare C_P iv) capacité calorifique thermique molaire ou massique isochore C_V 4. I. capacité calorifique thermique pour les gaz parfaits i. gaz parfaits monoatomiques ii. gaz parfaits diatomiques iii. relation entre C_P et C_V pour un gaz parfait, relation de iv. C_P et C_V pour un mélange de gaz parfaits 4.II. capacité calorifique thermique pour les liquides et les solides 5. capacité calorifique thermique pour les solides 6. Calcul de la quantité de chaleur pour différentes transformations III/ Calorimétrie 1) Le calorimètre 2) Les différents types de calorimètres 3) La valeur ou la masse en eau du calorimètre µ 4) Calcul de la température d'équilibre T_e 5) Calcul de la chaleur de combustion à pression constante Q_P 6) Calcul de la chaleur de combustion à volume constant Q_V 7) Chaleurs latentes de changement d'état physique (L_{fus} , L_{vaP} , L_{sub} ,...) IV/ L e travail 1) Expression générale du travail des forces de pression 2) Travail réversible W_{rév} 3) Travail irréversible W_{irrév} 4) Application de calcul du travail pour les différentes transformations CHAPITRE III: Le premier principe de la thermodynamique 02.5 1) Equivalence entre chaleur et travail 2) Enoncé du premier principe 3) Expression générale du premier principe 4) Définition de l'énergie interne U 5) Expression différentielle de l'énergie interne 6) Expression différentielle du premier principe 7) Calcul de la variation de l'énergie interne ΔU a) 1^{ére} loi de Joule ; la variation de l'énergie interne d'un gaz parfait b) Transformation isochore c) Transformation isobare d) Relation entre Q_P et Q_V i) pour un gaz parfait (relation de Mayer) ii) pour les réactions chimiques e) Travail adiabatique réversible W_{rév} .Equation de Laplace f) Travail adiabatique irréversible W_{irrév} 8) Notion de l'enthalpie H a) La fonction enthalpie

b) Expression différentielle de l'enthalpie	
c) 2 ^{ére} loi de Joule ; la variation de l'enthalpie des gaz parfaits	
CHAPITRE IV: Applications du premier principe de la thermodynamique à la	
thermochimie	
thermochime	
1) Chaleurs de réaction : Q_R ; Q_P ; Q_V	
2) L'état standard	01 5
3) L'enthalpie standard de formation ΔH_f^0	01.5
4) L'enthalpie de dissociation	
· · · · · · · · · · · · · · · · · · ·	
5) L'enthalpie de changement d'état physique (ΔH_{fus} , ΔH_{vaP} , ΔH_{sub} ,)	
6) L'enthalpie d'une réaction chimique ΔH_R	
a) Loi de Hess	
b) Energie de liaison ou enthalpie de liaison	
c) Energie réticulaire (cycle de Born-Haber)	
d) L'enthalpie de formation des atomes gazeux ΔH_f (atomes, gazeux)	
e) Loi de Kirchoff.	
f) Variation des chaleurs de réactions en fonction de la température	
g) Température de flamme et pression d'explosion	
CHAPITRE V : 2 ^{ème} principe de la thermodynamique	03
I/ Introduction	
1) Irréversibilité et évolution des phénomènes naturels	
2) Enoncés du second principe de la thermodynamique	
II/ Notion d'entropie	
1) Introduction de la fonction entropie S d'un système	
Expression générale du second principe de la thermodynamique	
3) la fonction entropie S dépend de p et de T ; S =f(p,T)	
4) L'entropie d'un solide	
5) L'entropie d'un liquide	
6) L'entropie d'un gaz parfait	
7) L'entropie d'un mélange de gaz parfaits	
8) L'entropie de changement d'état physique (ΔS_{fus} , ΔS_{vaP} , ΔS_{sub} ,)	
9) L'entropie des transformations adiabatiques réversibles et	
irréversibles	
10) Création d'entropie due aux transformations irréversibles	
11) Bilan entropique	
12) Critères d'évolution d'un système isolé ($dS_{crée} \ge 0$)	
III/ Machines thermiques	
 Applications du cycle de Carnot : moteurs thermiques ; 	
machines frigorifiques, Le rendement thermique d'une	

	machine 2. Application à quelques cycles moteurs a. Cycle de Joule (ou cycle de Brayton) b. Cycle d'Otto (ou cycle de Beau de Rochas) c. Cycle Diesel d. Cycle de Stirling	
CHAPITRE VI : 3 ^è	01	
2) L 3) L 4) L 5) L 6) L	inoncé du $3^{\mathrm{ème}}$ Principe, l'entropie absolue à zéro Kelvin (OK) l'entropie absolue molaire standard d'un corps pur S_{298K}^O l'entropie absolue molaire standard à T Kelvin (TK) l'entropie absolue molaire standard S_T d'un (solide, liquide, gaz) pur la variation d'entropie d'une réaction chimique ΔS_R a variation d'entropie d'une réaction chimique à une empérature T ; ΔS_R (T)	
d'évolution I/ Introd	/II : Energie et enthalpie libres – Critères d'un système luction et enthalpie libre	02.5
 III/ Les équilibres chimiques i) Lois d'action de masse et les constantes d'équilibre ii) Relation de Guldberg et Waage pour des équilibres homogènes iii) Influence de la température sur les constantes d'équilibre : relation de VANT'HOFF iv) Lois de déplacement de l'équilibre v) Aspect complémentaire de l'étude des équilibres 1) Coefficient de dissociation ou degré de dissociation α 2) Degré d'avancement d'une réaction chimique ξ 3) Le rendement d'une réaction chimique ρ 4) Variance d'un système en équilibre et règles des phases. 		